
PROJECTION PLANE PROCESSING FOR SKETCH-BASED VOLUME SEGMENTATION

Shigeru Owada, Frank Nielsen, Takeo Igarashi

Sony Computer Science Labs, Inc.
3-14-13, Higashigotanda, Shinagawa-ku,

Tokyo, Japan 141-0022
The University of Tokyo

7-3-1 Hongo, Bunkyo-ku, Tokyo, Japan, 113-0033

Ryo Haraguchi, Kazuo Nakazawa

National Cardiovascular Center
5-7-1 Fujishiro-dai, Suita,
Osaka, Japan, 565-8565

ABSTRACT

Selecting a region of interest (ROI) within unsegmented vol-
ume data is one of the fundamental operations in volume data
processing and analysis, yet it is difficult to perform the task
efficiently. This paper proposes several simple and intuitive
sketching user interface tools for the selection task, in which
the user can directly click or draw a stroke on the volume-
rendered object on the screen. The main contribution is that
the user’s input is pre-processed in 2D domain before apply-
ing the traditional 2D-to-3D stroke elevation algorithm (the
Volume Catcher system [1]). We tested the system with real-
world examples to verify the effectiveness of our approach.

Index Terms— User interface, Volume graphics, Seg-
mentation

1. INTRODUCTION

Volume segmentation is the process of splitting volume data,
usually provided as a stack of cross-sectional images, into
several perceptual or semantic units. The procedure is fun-
damental to obtaining useful information from the volume re-
gion, such as shape, connectivity, and various measurements,
including surface area, cubic volume, and number of compo-
nents. Although the importance of volumetric segmentation
has been recognized for decades and many sophisticated seg-
mentation algorithms have been proposed, no fully automated
method is yet available because segmentation remains depen-
dent on the observer’s subjective interpretation, which is im-
possible to obtain without user intervention. Most segmen-
tation methods have focused on low-level features, such as
edge detection and texture analysis, and have achieved some
degree of success. The difficulty is in high-level recognition
that is related to the semantics of data. Therefore, it is crucial
for the user to give appropriate guiding information to achieve
the desired segmentation result.
From the user’s perspective, one problem with 3D volu-

metric segmentation is that 3D guiding information is difficult
to specify, as the typical input device is a mouse, which pro-
vides only 2D information. Most existing systems deal with
this problem by allowing the user to access the cross-section
of volume data [2]. However, one drawback of this strategy
is that it requires tedious 3D interaction: the user has to spec-
ify the cutting plane and then provide guiding information on
that plane.

Two methods address this issue by supplying informa-
tion on the projection plane (the volume-rendered image) di-
rectly and automatically inferring depth information by ana-
lyzing the data [1, 3]. These two systems offer different user-
interaction techniques. Owada et al.’s Volume Catcher system
draws a contour of the ROI, while Yuan et al.’s Volume Cutout
system provides a rough sketch of the foreground and back-
ground regions. These two methods can significantly simplify
the volume segmentation process, but they remain “point de-
signs” in the large design space of 2D sketching interfaces
for 3D volume segmentation. Many interfaces have been pro-
posed for 2D image segmentation [4, 5]; these 2D user in-
terface designs should also be applicable to 3D segmentation
domain.

(a) Contour tracing tool

(b) Click selection tool

(c) Axis tracing tool

(d) Grabcut tool

(e) Foreground/Background sketching tool

Fig. 1. The proposed volume segmentation tools. Our frame-
work can potentially be combined with many more user inter-
face tools.

In this study, we generalize these latter two approaches
and propose a wider variety of sketching interfaces for vol-
ume segmentation, as well as an implementation framework
that can potentially incorporate a large number of existing and
future user interface techniques. Our system currently sup-
ports the following five user interfaces: contour tracing; direct
clicking to select small isotropic regions; tracing the central
axis to select a tubular target; boundary rectangle selection;
and foreground/background sketching (Figure 1). Our imple-

117978-1-4244-2003-2/08/$25.00 ©2008 IEEE ISBI 2008

mentation framework consists of a 2D image processing mod-
ule as the front end and an extension of the Volume Catcher
system as the back end segmentation module. The 2D image
processing module takes the user’s 2D gestures (e.g., clicks
and strokes) and generates a set of 2D curves that represent
the contour fragments of the ROI by examining the rendered
image. The generated curves are then passed to the extended
Volume Catcher system to return the desired ROI. This work-
flow is illustrated in Figure 2. The Volume Catcher system is
suitable for the task because it can segment the volume data
using only partial contours, whereas the approach used in the
Volume Cutout system requires the entire portion of the ROI
to be visible. This implementation framework can also easily
accommodate other 2D region selection or boundary selection
interfaces, such as grammar-based segmentation [6].
As in the original Volume Catcher system, our system re-

quires an external 3D segmentation module that takes point
constraints as input, which specify the inside or outside of the
desired region. The performance of our system strongly de-
pends on which 3D segmentation algorithm is used. Although
we used the 3D statistical region merging technique [7], many
other algorithms could potentially be used. Therefore, it is
beyond the scope of this paper to perform a quantitative per-
formance evaluation of our system.

2D Gestures

2D Contour Curves

Contour Click Axis Grabcut

Volume catcher algorithm

3D ROI

Depth Estimation and

Segmentation

2D Image Processing

…

…Hough

transform

Hough

transform

GMM /

Graphcut

Foreground /
Background

Region

merging

Fig. 2. The system overview

2. USER INTERFACE

After the user loads a volumetric model, the system renders
it using a traditional volume-rendering method. The user can
apply any rendering technique to enhance the appearance of
the model [8]. Since our system applies 2D image processing
to the rendered image, it is important to adjust these parame-
ters and make the target region as visible as possible.
Our current implementation supports five interface tools

for selecting an ROI: contour tracing, click selection, axis
tracing, GrabCut, and foreground/background sketching.
Contour tracing is the primary user interaction in which
the user’s input is sent directly to the original Volume Catcher
algorithm. The other tools first apply 2D image processing
methods to extract 2D contour curves, which are then sent to
the Volume Catcher algorithm.
Contour-tracing tool (Figure 1a)

This is the tool used in the original Volume Catcher system

[1]. The user traces a section of (or the entire) contour of the
target ROI using a 2D freeform stroke.
Click selection tool (Figure 1b)

This tool is a shortcut operation for selecting a small, spher-
ical ROI. The user simply clicks near the center of the ROI,
and the system returns the target 3D ROI as the output. This
tool allows the user to select multiple ROIs with successive
clicks, so it is especially useful when selecting many small
spherical ROIs, such as beans. This tool assumes that the tar-
get region is nearly spherical and that the user clicks near the
center.
Axis-tracing tool (Figure 1c)

This tool is designed for selecting tubular regions, such as
blood vessels, nerve fibers, and long bones. The user traces
the central axis of the target ROI, and the system returns the
corresponding 3D tubular region. This tool assumes that the
target tubular region has a consistent radius within the target
area. If this is not the case, the user is advised to use the
contour-tracing tool instead.
GrabCut tool and foreground/background sketching tool

(Figure 1d,e)
These user interfaces are borrowed from previous systems
[5, 4]. When using the GrabCut tool, the user specifies a
boundary rectangle that encompasses the ROI. When using
the foreground/background sketching tool, the user draws a
few strokes that indicate the inside and outside of the target
ROI on the screen.

3. ALGORITHM

Our system involves multiple steps (Figure 2). First, 2D im-
age processing modules take 2D gestures and generate par-
tial or entire 2D contours of the target ROI. Then, a depth-
estimation module estimates the depth of these 2D contour
curves. Finally, the volume-segmentation module places con-
straint points inside and outside the 3D contour and returns
the segmented target ROI. The last two modules are basically
identical to the original Volume Catcher system. The follow-
ing section describes these modules in detail. Note that this
workflow is quite general and consequently it is easy to extend
the user interface by incorporating additional 2D preprocess-
ing techniques.

3.1. 2D preprocessing

Most of our tools (except for the contour-tracing tool) are im-
plemented as a plug-in 2D preprocessing module that takes
2D gestures as input and returns one or more contour frag-
ments of the target ROI as output. Since contours are a com-
mon output of 2D segmentation techniques, almost all exist-
ing 2D image segmentation techniques can be adopted to our
framework. We perform hard segmentation (binary segmen-
tation), where each pixel belongs to either the foreground or
background.
As mentioned previously, the Volume Catcher system can

accept open or even disconnected contour input. Therefore,
unclear portions of the contour (resulting from occlusion, im-
precise input, or other reasons) can be omitted, and the miss-
ing portions can be found later using the volumetric segmen-

118

tation algorithm, which uses much richer information than a
single 2D image.
Contour-tracing tool

The contour curves drawn by the user are input into the Vol-
ume Catcher algorithm directly; therefore, the image process-
ing module does nothing in the current implementation.
Click selection tool

The click selection tool computes a circle that best approxi-
mates the contour of the circular region centered at the clicked
point. To do this, a Sobel filter [9]generates a differential im-
age, and then a search for the optimal circle along which the
average differential value is maximized is performed (Figure
3b, c). This is similar to the standard Hough transform algo-
rithm [9].
Axis-tracing tool

This tool is again implemented using a the Hough transform-
like technique. The output is two side strokes that trace the
contour of the tubular region, generated by displacing the
original axis stroke sideways with a certain offset value. The
objective is to find the optimal offset value with which the two
side strokes are located where the differential values are large.
Since only the sides of the axis are of interest, the distance
field of the curve is calculate using the Vector Distance Trans-
form (VDT) algorithm [10], and then each pixel is checked to
determine whether the closest point on the stroke is one (or
both) of the two endpoints of the stroke. If so, the pixel is re-
moved and ignored for the subsequent operations (Figure 3e).
The distance transform algorithm computes the closest point
automatically as the distance field image is generated.
Finally, the pixels are classfied according to the distance

values assigned and the best offset value is found by voting.
The computed partial contours are shown in Figure 3f.

click selection tool example

(a) (b) (c)

Axis-tracing tool example

(e) (f)(d)

Fig. 3. Examples of the click selection tool (a-c) and axis-
tracing tool (d-f)

GrabCut tool
The GrabCut system takes a bounding rectangle of the ROI
as input, finds initial foreground and background pixels, and
then alternately performs fitting to Gaussian Mixture Models
and Graph Cuts until convergence [5]. Since border matting is
not performed, the result is given as a binary image, each pixel
of which is indexed as foreground or background. The raw

output of the algorithm usually contains a jagged boundary.
Therefore, it is smoothened using the opening operation in
mathematical morphology [9]. Finally, the outermost contour
of the foreground region is traced and input into the Volume
Catcher algorithm.
Foreground/background sketching tool

This user interface essentially specifies a small number of pix-
els that are clearly categorized as foreground or background.
A variety of algorithms are available to segment volume data
based on the information [4]. We currently use a statisti-
cal region-merging technique [7], and then apply the opening
operation to the segmentation result to smoothen the bound-
ary, extract the outermost contour, and send it to the Volume
Catcher algorithm.

3.2. Elevation of 2D contours and segmentation

This process takes the partial or complete contour of the tar-
get ROI in the screen space and estimates its depth so that the
resulting 3D contours are located near the boundary of the
target ROI. Then the volume data is segmented using the 3D
contours information. This is almost identical to the Volume
Catcher algorithm [1], with the exception to support discon-
tinuous or looped contours.
If two or more contour fragments are given initially, it is

necessary to correlate them. If we apply the 2D and 3D al-
gorithms to them independently, the resulting 3D paths may
have substantially discontinuous depth values at the boundary.
This means that the resulting 3D strokes may stick to separate
objects in the data, which is undesirable. Therefore, we con-
nect the curved sweep surfaces associated with the disjoint
contour fragments when computing the optimal depth value.
That is, we map them into a single parameter space and ob-
tain a single continuous path in the space, guaranteeing that
the depth values for the computed 3D strokes are continuous.
If the contour stroke is closed (whether the stroke is single or
consists of multiple fragments), it is also important to guaran-
tee continuity of the depth values of the end points that cor-
respond to the top and bottom rows in the parameter domain.
This is illustrated in Figure 4. To satisfy this requirement, we
introduce an additional condition of | f(y1) − f(ymax) |≤ c
when computing the optimal path in the parameter space. Al-
though the dynamic programming is performed only once for
a single open stroke, it must be performedXmax times in this
case. To find the global maximum, the optimal path that starts
from each point on the edge y = 1 is determined, and then the
costs for paths that satisfy the new condition are checked.
Note that the degree of continuity to be maintained at the

sweep surface boundary and other places should differ. It is
also possible to control the continuity of the resulting 3D path
around the sweep planes boundary by modifying the continu-
ity constant c locally.

4. RESULTS AND DISCUSSION

We applied our technique to several datasets. Figure 5 shows
results using our new sketching user interface tools. In most
cases, the user can be less careful in providing 2D informa-
tion. The click selection tool is especially useful, more so

119

Parameter dmain3D space

Single
looped contour

Two contours
(Axis tracing tool)

More than two
contours

Continuity

Fig. 4. Parameterization of sweep planes for various cases.
Separate sweep planes are mapped to a single parameter do-
main to make the boundaries continuous. In addition, the top
edge and the bottom edge of the parameter domain are also
connected.

than expected, because it works robustly and also most ob-
jects have a specific direction from which the object is seen
as a circle. The foreground/background sketching tool is also
useful because the 2D segmentation algorithm tends to return
good results. Conversely, the axis-tracing tool is not very ef-
ficient because it requires a relatively precisely traced central
axis of the ROI. It may be less intuitive, but more reliable,
to trace the contour of the tubular region directly using the
contour-tracing tool. The GrabCut tool was also less effective
than the others, because of the poor 2D segmentation abil-
ity of volume-rendered images. We needed to additionally
specify foreground and background regions to obtain the cor-
rect result in Figure 5c, as suggested in the original paper [9].
This may have been caused by the limited color variation of
the data we used.

Based on these observations, we conclude that the quality
of the result is strongly affected by the quality of the 2D
segmentation results, which stems from a good choice of
segmentation algorithm and visualization parameters, such as
opacity/color transfer function, or camera parameters.

(a)

(b)

(c)

(d)

Fig. 5. Results

5. LIMITATIONS AND FUTUREWORK

Our system can easily and intuitively segment volumetric data
through unprecedented user interfaces. However, we did not
apply our technique to solve real problems facing professional
users. Therefore, a large-scale evaluation test is necessary to
make our system useful to targeted users.
Other future plans include implementing a mechanism to

fix partially failed results, applying surface representations,
and designing better user feedback.

6. ACKNOWLEDGEMENTS

Part of our dataset was taken from the Visible Korean Human
dataset (http://vkh3.kisti.re.kr/new). We thank Justin Talbot
for distributing his implementation of the GrabCut system
(http://www.justintalbot.org).

7. REFERENCES

[1] Shigeru Owada, Frank Nielsen, and Takeo Igarashi,
“Volume catcher,” in SI3D ’05: Proceedings of the 2005
symposium on Interactive 3D graphics and games, New
York, NY, USA, 2005, pp. 111–116, ACM Press.

[2] Fan-Yin Tzeng, Eric B. Lum, and Kwan-Liu Ma, “A
novel interface for higher-dimensional classification of
volume data,” in Proceedings of IEEE Visualization
2003. 2003, pp. 505–512, IEEE.

[3] Xiaoru Yuan, Nan Zhang, Minh X. Nguyen, and Bao-
quan Chen, “Volume cutout,” The Visual Computer
(Special Issue of Pacific Graphics 2005), vol. 21, no.
8–10, pp. 745–754, 2005.

[4] Yuri Boykov and Marie-Pierre Jolly, “Demonstration
of segmentation with interactive graph cuts.,” in ICCV,
2001, p. 741.

[5] Carsten Rother, Vladimir Kolmogorov, and Andrew
Blake, “”grabcut”: interactive foreground extraction us-
ing iterated graph cuts,” ACM Trans. Graph., vol. 23,
no. 3, pp. 309–314, 2004.

[6] Feng Han and Song Chun Zhu, “Bottom-up/top-down
image parsing by attribute graph grammar.,” in ICCV,
2005, pp. 1778–1785.

[7] R. Nock and F. Nielsen, “Grouping with bias revis-
ited,” in IEEE International Conference on Computer
Vision and Pattern Recognition, A. Bobick L.-S. Davis,
R. Chellapa, Ed. 2004, pp. 460–465, IEEE CS Press.

[8] Barthold Lichtenbelt, Randy Crane, and Shaz Naqvi,
Introduction to volume rendering, Prentice-Hall, Inc.,
1998.

[9] John C. Russ, The Image Processing Handbook Fourth
Edition, CRC Press, 2002.

[10] James C. Mullikin, “The vector distance transform in
two and three dimensions,” CVGIP: Graph. Models Im-
age Process., vol. 54, no. 6, pp. 526–535, 1992.

120

